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Chapter 1

Preface

1.1 Disclaimer

This document is a description of how the author has built an ignition timing
feedback subsystem that uses ion sensing. The system is being used solely for
his private experiments.

If you intend to use this information in any way, you should find out what
you are allowed to do, since some companies have patented this technology. The
author has nothing to do with these companies, and gives no guarantee for the
authenticity or correctness of any information presented in this document.

All information in this document is for informational purposes only; to give
an idea of how a simplified ion sensing feedback system can be built. If you
use this information for anything, you do it at YOUR OWN RISK, the author
takes NO RESPONSIBILITY for any harm or damage caused by doing so.

Neither can the author be blamed for using bad English.
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CHAPTER 1. PREFACE

1.2 General

This second edition covers, in addition to the basics found in the first one, also
the MSP430-based implementation of the ion-sensing module. It is not written
in great detail, but the main structure of the system is being discussed. This is
a compromise between a poster and a tutorial, the former being useless and the
latter taking ages to write..

1.3 What is ion sensing (in this document)?

1.3.1 Simple..

A method to get to know whether ignition is too early or too late, on a cycle-to-
cycle basis. No extra intrusive sensors, no engine modifications. The technology
can be applied to any internal combustion engine that is ignited by a spark plug
(or has a similar pair of electrodes installed ;), independent of the engine layout
and fuel.

1.3.2 ..and efficient

We get to know the crank angle where the pressure is at its maximum. If this
PPP (Peak Pressure Position) is kept constant (depends only on motor design)
under all conditions, we can suppose to have the ignition ”perfectly tuned” all
the time. The same could be achieved by installing a high pressure sensor in
the cylinder head next to the spark plug, but it is seldom possible due to both
limited space in the block and also the high mechanical stress applied to the
assembly. Ion sensing uses the spark plug as an intrusive sensor. We apply a
voltage of 100-400 Volts across the spark gap just after the ignition, and as both
the combustion flame and also ionized resultants conduct a little electricity, we
can measure the current via the spark gap, and get a curve, where we can extract
several parameters such as PPP.

1.4 Benefits (to mention a few)

Traditional ignition control relies on predetermined rules (tables of factors).
These rules are coded in the control system (electronic or mechanical) upon
manufacture. The correctness of ignition timing in road conditions depend on
how well the designer has been able to reckon with all the parameters that affect
the burn rate and thus the ’ideal’ advance. Not to mention the effect of aging
of the engine.

Usually the timing can be estimated quite well (with a modern ECU) during
medium or high load, and when air humidity is relatively low, as in the proto-
typing lab. But, as these high load conditions in dry air are quite infrequent in
normal use, the correct timing at light load (lean mixture) and varying humidity
is of the highest importance, especially when economy, smooth operation, high
instantaneous power, low emissions and durability are important factors. This
is the case in all normal cars.

When an ignition control system uses ion sensing, it can, after every single
combustion, ”see”, if the ignition was too early or too late. The predetermined
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CHAPTER 1. PREFACE

tables, which can be substantially simpler than with traditional predictive con-
trol, are then updated to reflect the current conditions. A simple table may still
be used, but if a fast enough feedback system is used, the table is only used
upon cranking and similar conditions, where no reasonable ionization current
may be present after ignition. The ignition control system is simplified a lot,
as the amount of discrete sensors is reduced to a minimum of a crank position
sender (TDC sensor or better).

Due to the quite demanding nature of the ion current signal (the shape of the
current that flows across the spark gap during combustion) it is reasonable to
use ion sensing only as a correction factor. It may be difficult to get reliable data
after every combustion, so the system may be altered in a way that the feedback
unit spits out an averaged (weighed) error angle (how much the ignition is too
late or early, in degrees) of e.g. ten revolutions, and the original control unit may
then tune the overall ignition table, being able to do this after every cycle. With
this technique the ignition tuning steps are ’blurred’ to minimize the effect of
an erroneous angle, still maintaining fast response to changing conditions such
as mixture enrichment during acceleration.
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Chapter 2

Theory of operation

2.1 Prerequisites

Prior to trying to understand the issues covered in this document it is advised
that you spend a little time e.g. searching the web and finding general informa-
tion about ion sensing in ignition control, especially if you are not familiar with
this kind of technology. I could give a bunch of URLs here, but they would,
sooner or later, become outdated. For your convenience, please use a search
engine instead.

2.2 General

We can learn from deeply studying the nature of an internal combustion engine,
that the signal we get from the spark plug can be approximated as a sum of
two (or three for some purposes) Gaussian curves [1], the first of which is due
to the charge carried by particles in the flame (a.k.a flame ionization). The
second represents the pressure in the cylinder (Fig. 2.1). This is because the
voltage we apply across the spark plug electrodes ionize the resultants (not-
yet-escaped exhaust gas), and the amount of charge carried by these ionized
particles is proportional to the gas pressure around the electrodes. And as we
are interested in the point (crank angle) where pressure reaches its maximum, it
is the peak position of the latter term. The difficulty is to extract that position,
and the first method that comes to mind is brute curve fitting. Gaussian curve is
of type ae−b(x−c)

2
, so the whole curve in this model is a sum of two exponential

functions. This leads to huge amount of calculations in curve fitting, so we
either have to reduce resolution to an unusable amount, or simplify the process
in some way. This is because the calculations have to be done approx. 50 times
per second per cylinder at a resolution of one degree.

2.3 My version

The curve fitting method can be simplified mathematically to make it possible
to do the calculations in real-time with moderate computing power (an ordinary
microcontroller). Despite this I thought that it would be nice to be able to build
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CHAPTER 2. THEORY OF OPERATION

Figure 2.1: The measured signal and its components

a functional system without first having to bury oneself in maths. So I decided
to try a simplified version of curve fitting, something similar to what I do myself
when trying to approximate the peak position from a curve that is printed on
paper. The model is:

• find the highest peak of the whole signal (giving approx. the peak of the
flame term)

• do a primitive curve fit to find a Gaussian curve that fits to the first peak’s
rising slope

• extract that curve from the original signal

• find the highest peak of the remainders

• trust in the result

This method gives surprisingly correct results, at least so correct that I couldn’t
say them to be incorrect when visually comparing to the original signal. So it
is time to put it to work. Oh, and of course, when the system is working (all
the hardware built), the software can always be enhanced to give more accurate
results. The point here is to get a good enough algorithm to start with.
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Chapter 3

Laptop-based test bench

Having written the algorithm in C on Linux I wrote a program that reads signal
from an 8-bit ADC attached to a laptop’s parallel port, extracts the PPP and
shows the results on screen. When the engine was idling, the laptop, that was
on top of it, had a meter on its screen showing PPP that was varying from
somewhere near 15 degrees to over 40 degs occasionally. The engine is not in
perfect tune..;) All the time I had an oscilloscope attached to the signal cable
to be able to verify the results, which seemed to be correct. When the engine
was loaded a bit, the PPP got more stable, so the system was working. The
problem was that as I only had an 8-bit ADC, and the dynamic range of the
signal is much wider, I had to manually re-tune the preamplifier not to get the
signal clipped during conversion at a higher load. Anyway, the algorithm was
proofed to work as expected.

3.1 Detailed hardware

3.1.1 High voltage side

To be able to get the signal from the spark plug, you have to apply a relatively
high voltage to it after ignition, and measure the resulting current, which is of
order 1mA. For this purpose I built a simple switching flyback inverter based
on the 555 timer and a 10A mosfet (high rating to allow for bad design without
smoke :) Some systems use a plain zener diode and a capacitor in place, but
this is only possible when the car is fitted with four terminal coils or similar
with entirely isolated secondary side, which are not quite common. At least my
car doesn’t have one..:)

3.1.2 Isolation

Plug

signal

(−)

400(+)
Coil

4.7
k

Figure 3.1:
High voltage
assembly to
the spark
plug

The 400V must be applied to the spark plug, which means that we do not want
to get any current (especially at 15kV) from the plug during spark. So we must
have a diode that has reverse breakdown voltage substantially higher than the
ignition system’s spark voltage. I put 24 1kV controlled avalanche diodes in
series to get Vr of 20kV, which is enough for my old coil ignition.

The installation must be done with great caution, to make sure that no one
gets hurt by either the high ignition voltage (> 10kV) or the ion sensing voltage
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CHAPTER 3. LAPTOP-BASED TEST BENCH

(400V) when the engine is running. I used silicone tube to cover the diode chain.

3.1.3 Noise reduction and signal conditioning

As the operation environment is quite demanding in the sense of protection from
electromagnetic interference (EMI), the signal present across the resistor near
the spark plug is transferred in a coaxial (microphone) cable to the filtering and
preamp unit. I use a 4700Ω resistor as the current sensor, so the amplitude
of the signal is somewhere between 3 and 5 Volts at its highest. The filtering
must be minimal, because the useful band of the signal goes up to 30kHz, so I
use a simple RC low-pass filter with -3dB point somewhere around 50kHz. Also
minimal distortion is of utmost importance, as any phase shift in the major
components result directly in wrong PPP estimate. The filter is built into a
two-stage amplifier consisting of a unity-gain inverter and an adjustable-gain
amplifier. This is because the signal present on the resistor leads is from 0 to
-5V. To make the signal usable, it must first be inverted, and this is carried out
at its simplest by constructing an op-amp-inverter with one half of a LM358.
This design also provides us with a substantially high input impedance, which is
important due to the nonlinear nature of the signal source. Then the other half
is used to create the amplifier. The resulting signal is positive-up, 0-to-5V signal,
which can be directly fed to the ADC. In general, this way of getting the ion
current converted to voltage is not optimal, especially as a low-noise high-voltage
isolated floating-output DC/DC-converter is needed. For better performance
(and less words is module descriptions), the MSP430 version implements an
enhanced version of the high-voltage circuit. See later in this document.

3.1.4 Analog-to-Digital conversion

In the first version I used a 8 bit ADC from Texas Instruments they offered me
as a sample. It was chosen because I wanted to get easy interface via the parallel
port. The ADC was of parallel-out type, so I just needed to put wires between
the parallel port pins and the pins on the ADC. The return path (ground) from
the parallel port was blocked with a low-drop diode to prevent burning the port
driver if some of the data pins were mistakenly pulled low while the ADC was
sending high.

3.1.5 Crank angle sender

To make the sampled signal useful, we also need some timing information. I use
a simple aluminum plate mounted to the generator belt pulley at the end of the
crank angle.

The rotation of the plate is encoded with an optical switch and sent to a
pin in the parallel port. The design of this sender is not robust at all; it is just
simple to make, whereas the final version must have a hall effect detector and
an appropriate metal plate. But for a prototype this is good enough.

20

Figure 3.2:
Crank angle
timing plate

3.2 Software

I have no knowledge of an existing system that would be using this technology.
When writing software for the laptop implementation, I tried to make things
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CHAPTER 3. LAPTOP-BASED TEST BENCH

as simple as possible, and, first of all, fast. The goal was to keep the amount
of instructions per two engine revolutions (four-stroke) under 5000, and the
result was approx 3000. This means that if the engine runs at 6000RPM, you
need a processor capable of doing 150000 instructions per second for the signal
interpretation. So my 100MHz 486 was really fast enough..;) So I put a nice
analog meter on screen instead of a plain ASCII output.

I don’t provide any sources at this point, as this first version was really a
prototype in all respects. All I say is that it was coded in C with Linux gcc
and basic X11 libs, with optional real-time scheduling. As soon as I saw that
the algorithm was working, and didn’t need all too much computing power to
keep real-time, I moved forward to the next implementation. Anyway, the basic
structure of the software is as follows:

3.2.1 Basic structure

Data logging cycle:

• keep discarding samples until a high spike due to spark occurs in the signal

• when the spark peak goes down, start logging sampled data for further
processing

• log data until 120ATDC (approximated from the amount of samples col-
lected during signal from timing plate encoder is active (from TDC to
TDC+20 degrees)

• when ready, hand over the logged data for PPP extraction

PPP extraction routine:

• find the first peak location

• fit a Gaussian curve to that peak’s rising slope

• extract that curve from the original data

• find the remaining signal’s peak position

• transform the peak coordinate (sample number) into degrees ATDC with
the help of knowing from which sample to which sample the timing plate
signal was active (from TDC to TDC+20 degrees again)

• put the PPP on the screen ;)

• adjust sampling speed if the amount of samples was too small or too high
(adapt sample rate to changing RPM)

• pass control to the sampling routine

And that’s it. The routines can be enhanced in many ways, such as controlling
the sampling with a PLL (Phase Locked Loop) so that no software RPM sensing
needs to be done, adding automatic signal level control (when used with a 12-bit
DAC) etc.. But it works.

As it became obvious that the algorithm is promising, and that I needed
more resolution to the A/D conversion, it was time for the next implementation
with Texas Instruments 16-bit RISC microcontroller MSP430.
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Chapter 4

Stand-alone system on
MSP430

4.1 General

MSP430 is a family of 16-bit RISC microcontrollers

Figure 4.1: DIY

PQFP64-to-0.1in

pitch -adapter

made by Texas Instruments. I use the MSP430F149 that
has 60kB of FLASH and 2048 bytes of RAM in addition
to a range of peripherals, of which the ones in use in
the system are being discussed later. The hardware of
the system is now fully functional, the development being
mostly focused on the algorithms. The software works
too, but work needs to be done so make it more robust
in varying conditions. The latest change in the software
was an algorithm rewrite where all routines became 16-bit
ones, thus rendering automatic gain control obsolete. The

reason for some routines being initially written in 8-bit world is that otherwise
the sampled window has to be stored with 16-bit accuracy, where only 8 of them
are actually needed for precise results, so we’re wasting memory. But as fast
transient response is critical, it has become obvious that the best solution is to
get rid of bit-shifting etc. and do everything in the 16-bit world.

4.2 Hardware

4.2.1 General

The hardware of the system gets often minor improvements that would make a
whole bunch of schematics useless in a split second. That’s why I think the only
reasonable way to make this document is to give the main characteristics of the
whole system and then concentrate on the modules and describe them in detail,
because they are what distinguishes this system from any other mixed signal
processing unit, not the signal wiring between them. The most important thing
around here (too) is EMI protection and suppression, which definitely can’t be
described in the schematics and depends on so many factors that it’s out of the
scope of this story. All the important pieces should be there, and if they aren’t,
feel free to ask for them.
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CHAPTER 4. STAND-ALONE SYSTEM ON MSP430

4.2.2 Overview

First of all, as the packaging of the MSP430 (QFP) is quite uncomfortable
when one needs to use scope probes with it, an adapter has been made (Fig.
4.1) that has 64 traces each going from a leg to a pin on the edge. The adapter
is then inserted into a 4x16-pin square socket on the proto board. The board
is mounted in an aluminum enclosure, and all external and internal wiring is
done with shielded cable, either coax or multiwire. The in the enclosure is a
bunch of 2.8mm coax, but without it, no protoboarding with long wires and
space for experimenting is possible due to severe crosstalk between digital and
extremely low-power analog signal wires. The board is divided into two separate
cabinets by an anuminium ground plane. The first one is populated by the power
supply and serial communications, timing and signal conditioning hardware.
This means that there are two regulators, one MAX232, one CMOS hex inverter,
one NPN transistor and a handful of passive electronics and connectors. The
other cabinet is for the MSP430, its peripheral components, diagnostic leds and
a pushbutton that puts the system into program mode allowing for in-system
firmware update. Figure 4.2 gives an overview on the basic structure of the
system 1.

4.2.3 Peripherals in detail

Ion sensor

Power supply design The process of ion sensing begins with applying the
bias voltage across the spark plug gap and measuring the resulting current.
The simplest method when counting amount of electronics involved, is to get
the bias voltage by charging a capacitor that is connected in parallel with a
zener diode between the ignition coil and the plug. Although being the simplest
and cheapest method available, it still poses some restrictions to the design of
the ignition system to work properly. It is required that the system is such that
the plug wire is permanently connected to the secondary of the coil, which in
turn is always grounded, thus eliminating the possibility to have a distributor.
So I decided to stay in the basic idea of having a separate DC/DC-converter
to do the job. What is new to this version in comparison to the first one, is
that no floating-output power supply is needed anymore. Instead, by utilizing
a simple current mirror, a non-floating one can be used. An additional benefit
of the ability to use a simpler design in the converter, is that noise reduction is
much more efficient as a big capacitor (and a small one also) can be connected
between the power lead and ground, which is not the case with flying outputs,
where the resulting noise must be eliminated later, with dramatical effect on
signal quality.

Current mirror The ideal model of a current mirror (fig. 4.4) is that it
makes a current Isense that is equal to a ’programming current’, Iion, as can be
easily seen when paying attention to the base voltages of the transistors that are
equal in type. There are several parasitic effects that make the real-world case

1At the date of publishing this document there is also a Microchip MCP2510 CAN2.0B
transceiver and a 3.3V CAN bus driver for it on the board. This additional hardware enables
the module to be hooked to a max. 1Mb/s CAN network.
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S−232

PC laptop
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Timer_A
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A/D converter
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Figure 4.2: Subsystem block diagram

Figure 4.3: Power supply diagram
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Figure 4.4: Current mirror connected to the spark plug
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Figure 4.5: Ignition pickup module

differ from the ideal one (as usual), but in this configuration the error remains
neglible throughout the dynamic range of the signal. The Uion in the figure is
the voltage signal to be brought to the ADC via a coaxial cable. In the ideal
case, this voltage could be expressed as Uion = 5600 ∗ Iion, and the real-world
case isn’t far from that. The Uion is then split with a resistor divider (trimmer
potentiometer) on the main board, just after the input voltage clamp diodes,
so the basic setting of signal level can easily be adjusted. The 180kΩ resistor
is there to prevent the power supply output capacitor from discharging via the
spark plasma thus lengthening the spark by several milliseconds and frying the
transistors is seconds (nice fireworks)..

Ignition pick-up

When the cylinder fires, the sampling routine waits for a preset time, e.g. 1ms,
and starts data logging. In order to give the routine the timing information,
an inductive pick-up sensor is fitted. It consists of a toroidal inductor (120
turns on a noise suppression ferrite core) fitted around the spark plug lead and
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CHAPTER 4. STAND-ALONE SYSTEM ON MSP430

a transistor with biasing trimmer potentiometer on the base. The pulse from
the inductor triggers the transistor, which in turns drives an inverter to achieve
square-wave output. The sensitivity of the sensor can be adjusted with the
biasing trimmer.

TDC sensor

The TDC timing plate is the same as in the first version, and shown in figure
3.2. An optical switch turns off when the nose on the plate passes by, and gives
a TTL-pulse that lasts exactly 20degrees. This signal is then driven through
an inverter, and further to the MSP430. The signal is used for TDC and RPM
detection and sample rate correction upon RPM changes.

4.3 Software

The basic structure of the software is similar to the one in the laptop version.
The major difference between the two is the hardware timer/interrupt -based
sampling routine in the MSP code, where the software only updates certain
variables to control the sample rate when needed, and then fetches words from
the AD in the interrupt handler. Another significant change is the 16-bit arith-
metics in the peak-finding algorithm. Due to the rewrite, there is a lot of C code
left, so the next thing to do is to put the most critical parts into assembler and
optimize. Another thing to do is to make use of the MCP2510 CAN controller
that is now on board and connected to the MSP430 via 4Mbps SPI line. The
controller supports CAN baud rates of up to 1Mbps and extended messages.
The goal is to make the subsystem send PPP information via this medium to
other nodes in the system, e.g. the ECU and maybe a laptop, instrument panel
etc...

4.3.1 The code itself

It’s probably the best solution that I don’t put any actual code available with
this document, because it’d become outdated the day I next change something
in the code. But in case someone still wants to get it (licensed under GPL), tell
me and I’ll send it.
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